

Adoção de SCRUM em uma Fábrica de Desenvolvimento

Distribuído de Software

Felipe S. Furtado Soares, Leila M. Rodrigues de Sousa Mariz, Yguaratã C.

Cavalcanti, Joseane P. Rodrigues, Mário G. Neto, Petrus R. Bastos, Ana Carina M.

Almeida, Daniel Thiago V. Pereira, Thierry da Silva Araújo, Rafael S. M. Correia,

Jones Albuquerque

Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7851, Cidade Universitária – 50.732-970 – Recife – PE – Brasil

{fsfs, lmrsm, ycc, jpr, mgn, prb, acma2, dtvp, tsa, rsmc

joa}@cin.ufpe.br

Abstract. The use of agile software development methodologies has become a

demand in distributed software teams. This work has the objective to report

the experiences acquired on the adaptation of a distributed development

process based on SCRUM executed by an open source software factory.

Resumo. O uso de metodologias ágeis de desenvolvimento de software tem se

tornado uma demanda em equipes distribuídas de software. Este trabalho tem

por objetivo relatar as experiências obtidas na adaptação de um processo de

desenvolvimento distribuído com base no SCRUM realizado por uma fábrica

de software open source.

1. Introdução

Ao longo dos últimos anos, organizações estão cada vez mais motivadas a aderir ao
modo de desenvolver software de forma distribuída. Boa parte dessa motivação vem do
sucesso adquirido por grandes projetos de software open source, como Linux e Open
Office, os quais têm como uma das principais características a distribuição geográfica de
seus membros.

 Outro fator com influência relevante no desenvolvimento distribuído é o avanço
das comunicações através da Internet e o crescente surgimento de ferramentas voltadas
para Engenharia de Software, as quais visam administrar de forma mais organizada e
eficiente o desenvolvimento distribuído de software. Em [Martin e Hoffman 2007] é
feito um levantamento de como tais ferramentas (como controladores de versões,
ferramentas de triagem de bugs, fóruns de discussão, listas de e-mail etc) têm sido
utilizadas por times distribuídos na empresa Kitware para desenvolver software. Alguns
sites também oferecem todas essas ferramentas gratuitamente, como é o caso do
SourceForge.net [SourceForge 2004].

 Como conseqüência direta desse novo modo de desenvolvimento de software,
temos a diminuição de custos e uma maior agilidade e praticidade na hora de encontrar
mão-de-obra. Contudo, como grande parte dos desafios na Engenharia de Software não
é limitada apenas a aspectos técnicos [Kontio 2004], o desenvolvimento distribuído de
software ainda deixa muitas dúvidas quanto a sua real eficácia, como: times distribuídos
têm a mesma eficiência que times centralizados? A comunicação distribuída, e muitas

vezes assíncrona, é tão eficiente quanto à comunicação síncrona? Os processos de
software atuais são capazes de lidar com as características do desenvolvimento
distribuído e ao mesmo tempo garantir a qualidade do produto?

 Em paralelo a essa discussão estamos vivendo a partir do ano 2000 uma
tendência para o desenvolvimento ágil de aplicações devido a um ritmo acelerado de
mudanças e inovações na tecnologia da informação, em organizações e no ambiente de
negócios [Boehm 2006].

 Boehm cita, ainda, que no final dos anos 90 acompanhamos o surgimento de
vários métodos ágeis, entre eles: Adaptive Software Development, Crystal, Dynamic
Systems Development, eXtreme Programming (XP), Feature Driven Development e
Scrum. Todos esses métodos empregam princípios ágeis, tais como ciclos iterativos,
entrega rápida de software funcionando e simplicidade, como definido no Manifesto
para Desenvolvimento Ágil [Beck et al. 2001] publicado em 2001. A essência desse
movimento é a definição de novo enfoque de desenvolvimento de software, calcado na
agilidade, na flexibilidade, nas habilidades de comunicação e na capacidade de oferecer
novos produtos e serviços de valor ao mercado, em curtos períodos de tempo
[HighSmith 2004].

 Inserido neste contexto de desenvolvimento distribuído de software, este
trabalho apresenta a aplicação do Scrum em um processo de desenvolvimento de uma
fábrica de software open source a qual possui fortes características de desenvolvimento
distribuído.

 Este trabalho está organizado da seguinte maneira: a Seção 2 apresenta uma
visão geral de desenvolvimento open source; na Seção 3, é descrita uma visão geral do
Scrum; a Seção 4 compreende o estudo de caso com as principais adaptações do Scrum
no processo distribuído; na Seção 5 são apresentadas as lições aprendidas e conclusões
finais.

2. Visão Geral de Desenvolvimento de Software Open Source

A cada dia é observado um crescente movimento em torno do desenvolvimento de
software livre, caracterizando, dessa forma, o desenvolvimento de projetos por equipes
geograficamente distribuídas. Além disso, a crescente demanda de mercado por
software livre a ser comercializado necessita que sejam satisfeitas restrições de custo,
prazo e qualidade [Hecker 2000]. Dessa forma, o processo deve ser definido com a
intenção de ser o mais leve possível, mantendo, entretanto, a formalidade necessária
para o desenvolvimento distribuído.

 Raymond [Raymond 1998] relata que software open source é desenvolvido por
times auto-organizados e distribuídos, que raramente se reúnem presencialmente e
coordenam suas atividades através de comunicações baseadas em computadores. Ele
ainda descreve um trabalho relevante sobre o processo de software open source quando
associa o desenvolvimento nas comunidades de software livre, desprovido de qualquer
processo formalizado, a um “Bazar” no qual as contribuições ocorrem ad hoc. Enquanto
que o modelo de desenvolvimento de software tradicional está associado a uma
“Catedral” e possui um processo formal bem definido.

 Conforme descrito por González e Robles em [González et al 2003], muitos são
os benefícios do modelo de desenvolvimento open source, como a realização dos
releases mais freqüentes; o baixo custo dos projetos, visto que desenvolvedores e
testadores trabalham de forma voluntária; alta qualidade e confiabilidade, visto que são
muitas pessoas revisando e testando o mesmo código, em arquiteturas e ambientes
distintos, aliado ao fato de que os usuários são tratados como co-desenvolvedores e, em
muitos casos, ao deparar-se com o erro, já identifica a solução e envia o pacote com o
problema solucionado.

3. Visão Geral do SCRUM

O Scrum foi criado em 1996 por Ken Schwaber e Jeff Sutherland e destaca-se dos demais
métodos ágeis pela maior ênfase dada ao gerenciamento do projeto. Reúne atividades de
monitoramento e feedback, em geral, reuniões rápidas e diárias com toda a equipe, visando à
identificação e correção de quaisquer deficiências e/ou impedimentos no processo de
desenvolvimento [Schwaber 2004].

 O método baseia-se ainda em princípios como: equipes pequenas de, no
máximo, sete pessoas; requisitos que são pouco estáveis ou desconhecidos; e iterações
curtas. Divide o desenvolvimento em intervalos de tempos de no máximo, trinta dias,
também chamados de Sprints.

 O Scrum implementa um esqueleto iterativo e incremental através de três papéis
principais [Schwaber 2004]: Product Owner: representa os interesses de todos no projeto;
Time: desenvolve as funcionalidades do produto; ScrumMaster: garante que todos
sigam as regras e práticas do Scrum, além de ser o responsável por remover os
impedimentos do projeto.

 Um projeto no Scrum se inicia com uma visão do produto que será desenvolvido
[Schwaber 2004]. A visão contém a lista das características do produto estabelecidas
pelo cliente, além de algumas premissas e restrições. Em seguida, o Product Backlog é
criado contendo a lista de todos os requisitos conhecidos. O Product Backlog é então
priorizado e dividido em releases. O fluxo de desenvolvimento detalhado do Scrum é
mostrado na Figura 1.

 Todo o trabalho no Scrum é realizado em iterações chamadas de Sprints.
Schwaber [Schwaber 2004] explica que cada Sprint inicia-se com uma reunião de
planejamento (Sprint Planning Meeting), na qual o Product Owner e o Time decidem
em conjunto o que deverá ser implementado (Selected Product Backlog). A reunião é
dividida em duas partes. Na primeira parte (Sprint Planning 1) o Product Owner
apresenta os requisitos de maior valor e prioriza aqueles que devem ser implementados.
O Time então define, colaborativamente, o que poderá entrar no desenvolvimento da
próxima Sprint, considerando sua capacidade de produção. Na segunda parte (Sprint

Planning 2), o time planeja seu trabalho, definindo o Sprint Backlog, que são as tarefas
necessárias para implementar as funcionalidades selecionadas no Product Backlog. Nas
primeiras Sprints, é realizada a maioria dos trabalhos de arquitetura e de infra-estrutura.
A lista de tarefas pode ser modificada pelo Time ao longo da Sprint, e as tarefas podem
variar entre quatro e dezesseis horas para a sua conclusão.

 Durante a execução das Sprints, diariamente o time faz uma reunião de quinze
minutos para acompanhar o progresso do trabalho e agendar outras reuniões necessárias.

Na reunião diária (Daily Scrum Meeting), cada membro do time responde a três
perguntas básicas: O que eu fiz no projeto desde a última reunião? O que irei fazer até a
próxima reunião? Quais são os impedimentos?

Figura 1. Visão geral do processo do Scrum (adaptada de [Gloger 2007])

 No final da Sprint é realizada a reunião de revisão (Sprint Review Meeting) para que o
Time apresente o resultado alcançado na iteração ao Product Owner. Neste momento, as
funcionalidades são inspecionadas e adaptações do projeto podem ser realizadas. Em seguida, o
ScrumMaster conduz a reunião de retrospectiva (Sprint Retrospective Meeting), com o objetivo
de melhorar o processo/time e/ou produto para a próxima Sprint.

4. Estudo de Caso - Uso do Scrum no Processo Distribuído

O estudo de caso aqui apresentado foi realizado por uma fábrica de desenvolvimento de
software open source [O3S 2007]. Esta fábrica é formada por dez alunos do curso de
Pós-Graduação do Centro de Informática da Universidade Federal de Pernambuco.
Todos os integrantes são do curso de mestrado e fazem parte da estrutura organizacional
da fábrica, conforme ilustra a Figura 2. Essa estrutura é composta por um Comitê
Gestor, responsável pelas principais decisões estratégicas da Fábrica e cinco Unidades
de Produção, cada uma com atribuições bem definidas e complementares, trabalhando
juntas com os clientes e a comunidade externa.

 O projeto executado está inserido na área de saúde coletiva/pública, denominado
ANKOS (A New Kind Of Simulator) [ANKOS 2007], que surge como um sistema
capaz de organizar as informações coletadas por pesquisadores em áreas de estudo da
esquistossomose, bem como as imagens de satélite da região, em um banco de dados
gerenciável e com possibilidade de consultas, recuperação e indexação da informação,
formando uma base sólida para a aplicação de autômatos celulares que possibilitem a
geração de cenários capazes de levar a tomada de ações estratégicas de combate e
prevenção da doença.

Figura 2 – Estrutura Organizacional da Fábrica O3S

 O processo da fábrica O3S é um tailor do Hukarz Process [Moraes 2007],
focado nas melhores práticas de engenharia de software, no RUP [RUP 2003] e no
Manifesto Ágil [Beck, K. et al. (2001)]. É um processo evolucionário orientado a
manutenção, baseado em esforço colaborativo e em gerência comunitária. Além de ser
executado de forma distribuída, assíncrona e descontínua, caracterizando, assim um
processo social, diferentemente dos processos tradicionais.

 O processo foi definido baseado em alguns princípios fundamentais: ciclo de
vida iterativo e incremental; planejamento nas fases iniciais do projeto; menor
quantidade de documentação; certo caos, porém controlável durante o desenvolvimento;
adaptação à comunicação remota; desenvolvimento centrado na arquitetura e adaptável
de acordo com a necessidade do projeto.

 O processo foi descrito baseado em políticas [Johnson K 2001] que definem as
diretrizes básicas a serem adotados por todos os projetos da fábrica de software. Elas
estão voltadas para o desenvolvimento de software com características open source, ou
seja, código compartilhado, equipe distribuída, desenvolvimento colaborativo e
descentralizado:

� O projeto de software deve ser modular para facilitar o desenvolvimento
concorrente;

� A prototipação deve ser fechada: um pequeno grupo desenvolve a versão
inicial do produto antes de liberar para a comunidade externa;

� A melhoria do produto é iterativa e incremental;
� O desenvolvimento é concorrente em vários níveis. Várias atividades de

fases diferentes podem ser realizadas em paralelo;
� A revisão de código deve ser realizada em larga escala. Vários usuários

revisam e inspecionam o código de outros usuários;
� Os requisitos também podem ser oriundos da comunidade. Os usuários e

desenvolvedores definem, coletivamente, as funcionalidades do software;

� Ferramentas de controle de versão e controle de mudanças são necessárias
para a boa comunicação entre a equipe. Todo projeto deve ter um repositório,
sob gerência de configuração, para armazenar a documentação e o código
fonte;

� A forma de comunicação principal é assíncrona;
� A informação deve ser compartilhada: código fonte, listas de discussões,

reportagem de erros, solicitação de novos requisitos etc;
� A colaboração é descentralizada;
� A liderança deve ser compartilhada;
� A motivação para contribuição deve ser incentivada pelo desejo de

aprendizado, pela criação de uma comunidade, pela disseminação de
tecnologia e inovação.

 Diversos aspectos do Scrum puderam ser utilizados para o desenvolvimento
distribuído. Primeiramente, o comitê da fábrica de software realizou o estudo de
viabilidade baseada na visão apresentada pelo cliente (product owner). Em seguida, uma
proposta comercial foi descrita com todo o product backlog inicialmente negociado com
a lista dos requisitos da aplicação. Este product backlog foi priorizado e dividido nas
sprints do projeto. Cada sprint foi dividida em quinze dias, onde, ao final de cada uma,
um conjunto de novo produto era disponibilizado.
 Dentro de cada sprint, eram realizadas reuniões assíncronas com o product

owner para que este indicasse os itens do backlog com maior valor de negócio. Em
seguida, a equipe analisava colaborativamente através de fóruns e lista de discussões,
qual a complexidade desses itens e o que caberia dentro da sprint em função de sua
capacidade de produção. A técnica de estimativa de Pontos de Casos de Uso foi
utilizada sempre considerando uma produtividade média das últimas sprints realizadas.
 Em seguida, os requisitos eram detalhados e, então, a partir daí o time
selecionava os itens de backlog priorizados, dividindo-os em tarefas de até 1 semana por
participante. Essas tarefas eram cadastradas numa ferramenta de planejamento e
acompanhamento de projetos para projetos que utilizam métodos ágeis [XPlanner
2002].
 Durante os quinze dias da sprint, a equipe fazia uso do fórum e lista de
discussões para simular o Daily Scrum Meeting. De tal forma que, diariamente, todos do
time sabiam o andamento das atividades e os impedimentos encontrados até o momento.
Era responsabilidade de um integrante do comitê da fábrica exercer o papel do Scrum

Master no sentido de resolver todos os impedimentos reportados por qualquer membro
do time.
 Assim como a comunicação da equipe, durante a sprint a comunicação entre a
equipe e o product owner era realizada através do fórum, e-mail ou ferramentas de
comunicação assíncrona, seja para aprovação de documentos, seja para o esclarecimento
de dúvidas ou alinhamento do andamento da sprint.
 No final da sprint, uma reunião síncrona, através de Skype ou MSN, era
realizada com o objetivo de apresentar ao product owner os resultados obtidos até o
presente momento. Em seguida, todos os integrantes do time eram convidados a
participar da retrospectiva da sprint, que na maioria das vezes era uma reunião realizada
de forma presencial. Uma reunião de lições aprendidas era conduzida por um integrante

do time que ficava responsável por coletar os pontos fortes, fracos e sugestões de
melhoria de cada participante.
 Algumas métricas foram coletadas e analisadas ao longo de cada sprint com o
objetivo de otimizar o uso do processo adaptado. Duas delas referem-se a variação de
esforço de desenvolvimento e a produtividade da equipe. Ambas têm o objetivo de
verificar a eficácia do processo de estimativas de esforço adotado. A variação média do
esforço realizado pela equipe por sprint tem sido em torno de 15% do valor estimado.
Enquanto que a produtividade teve uma melhora significativa: iniciando o projeto com
uma estimativa de 18 homem-hora para cada ponto de caso de uso e estabilizando em 10
homem-hora para cada ponto de caso de uso produzido.

5. Conclusões e Lições Aprendidas

Este trabalho apresentou um estudo de caso sobre a aplicação de métodos ágeis,
particularmente baseado na abordagem proposta pelo Scrum, em um processo para
desenvolvimento de software open source com fortes características de desenvolvimento
distribuído.

 Ao longo do desenvolvimento do projeto foi percebido que nem todas as práticas
do Scrum eram diretamente aplicadas ao contexto de desenvolvimento distribuído de
software. Os seguintes aspectos apresentaram os maiores desafios para o uso das
práticas ágeis:

� O Scrum defende a unidade da equipe de desenvolvimento. Isso está fortemente
relacionado com a presença física do time e com as iterações diárias. Na
experiência aqui relatada, o time geograficamente distribuído conseguiu superar
este desafio com o uso sistemático do fórum, listas de discussões e ferramentas
de chat que permitiam uma boa iteração da equipe;

� As reuniões diárias de quinze minutos previstas no Scrum para que todos
respondam às três perguntas básicas foram substituídas pela comunicação
assíncrona semelhante ao item anterior;

� O Scrum é focado em equipes auto-organizadas e auto-gerenciáveis, além de
prever a questão motivacional como principal aspecto de sucesso do projeto.
Esses mesmos aspectos puderam ser percebidos no desenvolvimento distribuído,
onde a equipe poderia ser formada por qualquer membro da comunidade open
source que por vontade própria quisesse fazer parte do projeto. Cada integrante é
quem escolhia qual atividade do backlog iria desenvolver;

� No Scrum, o product owner deve participar ativamente de vários pontos do
processo: visão, sprint planning, release etc. No desenvolvimento distribuído,
nem sempre é possível ter essa participação sistemática devido ao alto índice de
comunicação assíncrona. Em alguns casos, foi necessário que o time tivesse uma
postura pró-ativa para tomar algumas decisões sem envolver o product owner;

� Outro ponto de adaptação foi em relação às responsabilidades do Scrum Master
que, neste contexto, além de ter parte de seu tempo dedicado ao gerenciamento
dos impedimentos reportados pelo time, também fazia parte do time de
desenvolvedores.

 Apesar do Scrum não cobrir todas as características específicas para equipes
geograficamente distribuídas, foi possível fazermos uso de diversos aspectos de
desenvolvimento ágil sem, no entanto, comprometer as particularidades exigidas por
esses tipos de projetos.

Referências

ANKOS (2007) “A New Kind Of Simulator”, http://sourceforge.net/projects/ankos/,
2007.

Boehm, B. (2006), “A View of 20th and 21st Century Software Engineering”, ICSE 2006.

Beck, K. et al. (2001), Manifesto for Agile Software Development, http://www.
agilemanifesto.org/, Dezembro 2006.

Gloger, B. (2007), “The Zen of Scrum”, http://www.glogerconsulting.de.

Gonzáles, J. e Robles, G.(2003) “Free Software Engineering : A Field to Explore”,
Upgrade - Software Engineering State of Art, Novática, volume IV, N. 4.

Hecker, F. (2000) “Setting Up Shop: The Business of Open-Source Software”, IEEE
Software.

Highsmith, J. (2004) “Agile Project Management – Creating Innovative Products”, AddisonWesley.

Johnson, K. A. (2001) “Descriptive Process Model for Open-Source Software
Development”, Master Thesis, Univ. Calgary, Alberta.

Kontio, J., Höglund, M., Rydén, J. and Abrahamsson, P. (2004) "Managing
Commitments and Risks: Challenges in Distributed Agile Development,". In
Proceedings of the 26th International Conference on Software Engineering, pp. 732-
733.

Martin, K. and Hoffman, B. (2007). “An open source approach to developing software
in a small organization”. IEEE Software, 24(1):46–53.

Moraes, A. (2007). “Open Source Development Process-like in the Enterprise”,
Dissertação de Mestrado, Universidade Federal de Pernambuco.

O3S (2007) “O3S Open Source Software Solutions”, http://www.yguarata.org/o3s/,
2007.

Raymond, E. S. (1998) “The Cathedral and the Bazaar”, Disponível em:
http://www.firstmonday.org/issues/issue3_3/raymond/, Acessado em Maio/2007.

RUP (2003) "Rational Unified Process," R. S. Corporation, Ed., 2003.06.01 ed, 2003.

Scacchi, W. (2001) “Understanding the Requirements for Developing Open Source
Software Systems”. In IEE Proceedings Software, volume 148, number 1, pp. 24-39.

Schwaber, K. (2004), Agile Project Management With Scrum, Microsoft.

SourceForge (2004) “SourceForge.net”, https://sourceforge.net/, Acessado em
Julho/2007.

XPlanner (2002) “Project planning and tracking tool for agile development teams”,
http://www.xplanner.org/, Acessado em Julho/2007.

