Adocao de SCRUM em uma Fabrica de Desenvolvimento
Distribuido de Software

Felipe S. Furtado Soares, Leila M. Rodrigues de Sousa Mariz, Yguarata C.
Cavalcanti, Joseane P. Rodrigues, Mario G. Neto, Petrus R. Bastos, Ana Carina M.
Almeida, Daniel Thiago V. Pereira, Thierry da Silva Araidjo, Rafael S. M. Correia,

Jones Albuquerque

Centro de Informatica — Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7851, Cidade Universitaria — 50.732-970 — Recife — PE — Brasil

{fsfs, lmrsm, ycc, jpr, mgn, prb, acma2, dtvp, tsa, rsmc
joal@cin.ufpe.br

Abstract. The use of agile software development methodologies has become a
demand in distributed software teams. This work has the objective to report
the experiences acquired on the adaptation of a distributed development
process based on SCRUM executed by an open source software factory.

Resumo. O uso de metodologias dgeis de desenvolvimento de software tem se
tornado uma demanda em equipes distribuidas de software. Este trabalho tem
por objetivo relatar as experiéncias obtidas na adaptacdo de um processo de
desenvolvimento distribuido com base no SCRUM realizado por uma fdbrica
de software open source.

1. Introducao

Ao longo dos tdltimos anos, organizagdes estdo cada vez mais motivadas a aderir ao
modo de desenvolver software de forma distribuida. Boa parte dessa motivagdo vem do
sucesso adquirido por grandes projetos de software open source, como Linux e Open
Office, os quais tém como uma das principais caracteristicas a distribui¢do geografica de
seus membros.

Outro fator com influéncia relevante no desenvolvimento distribuido é o avango
das comunicagdes através da Internet e o crescente surgimento de ferramentas voltadas
para Engenharia de Software, as quais visam administrar de forma mais organizada e
eficiente o desenvolvimento distribuido de software. Em [Martin e Hoffman 2007] é
feito um levantamento de como tais ferramentas (como controladores de versoes,
ferramentas de triagem de bugs, foruns de discussdo, listas de e-mail etc) t€m sido
utilizadas por times distribuidos na empresa Kitware para desenvolver software. Alguns
sites também oferecem todas essas ferramentas gratuitamente, como € o caso do
SourceForge.net [SourceForge 2004].

Como conseqiiéncia direta desse novo modo de desenvolvimento de software,
temos a diminuicdo de custos e uma maior agilidade e praticidade na hora de encontrar
mao-de-obra. Contudo, como grande parte dos desafios na Engenharia de Software nio
¢ limitada apenas a aspectos técnicos [Kontio 2004], o desenvolvimento distribuido de
software ainda deixa muitas ddvidas quanto a sua real eficacia, como: times distribuidos
tém a mesma eficiéncia que times centralizados? A comunicacdo distribuida, e muitas



vezes assincrona, € tdo eficiente quanto a comunicacdo sincrona? Os processos de
software atuais sdo capazes de lidar com as caracteristicas do desenvolvimento
distribuido e a0 mesmo tempo garantir a qualidade do produto?

Em paralelo a essa discussdo estamos vivendo a partir do ano 2000 uma
tendéncia para o desenvolvimento 4gil de aplicagdes devido a um ritmo acelerado de
mudangas e inovacdes na tecnologia da informagdo, em organizacdes e no ambiente de
negdcios [Boehm 2006].

Boehm cita, ainda, que no final dos anos 90 acompanhamos o surgimento de
varios métodos ageis, entre eles: Adaptive Software Development, Crystal, Dynamic
Systems Development, eXtreme Programming (XP), Feature Driven Development e
Scrum. Todos esses métodos empregam principios dgeis, tais como ciclos iterativos,
entrega rdpida de software funcionando e simplicidade, como definido no Manifesto
para Desenvolvimento Agil [Beck et al. 2001] publicado em 2001. A esséncia desse
movimento € a definicdo de novo enfoque de desenvolvimento de software, calcado na
agilidade, na flexibilidade, nas habilidades de comunicacio e na capacidade de oferecer
novos produtos e servicos de valor ao mercado, em curtos periodos de tempo
[HighSmith 2004].

Inserido neste contexto de desenvolvimento distribuido de software, este
trabalho apresenta a aplicacdo do Scrum em um processo de desenvolvimento de uma
fabrica de software open source a qual possui fortes caracteristicas de desenvolvimento
distribuido.

Este trabalho estd organizado da seguinte maneira: a Secdo 2 apresenta uma
visdo geral de desenvolvimento open source; na Se¢do 3, é descrita uma visdo geral do
Scrum; a Se¢@o 4 compreende o estudo de caso com as principais adaptacdes do Scrum
no processo distribuido; na Se¢do 5 sdo apresentadas as licdes aprendidas e conclusdes
finais.

2. Visao Geral de Desenvolvimento de Software Open Source

A cada dia € observado um crescente movimento em torno do desenvolvimento de
software livre, caracterizando, dessa forma, o desenvolvimento de projetos por equipes
geograficamente distribuidas. Além disso, a crescente demanda de mercado por
software livre a ser comercializado necessita que sejam satisfeitas restricdes de custo,
prazo e qualidade [Hecker 2000]. Dessa forma, o processo deve ser definido com a
intengcdo de ser o mais leve possivel, mantendo, entretanto, a formalidade necessaria
para o desenvolvimento distribuido.

Raymond [Raymond 1998] relata que software open source é desenvolvido por
times auto-organizados e distribuidos, que raramente se reunem presencialmente e
coordenam suas atividades através de comunicagdes baseadas em computadores. Ele
ainda descreve um trabalho relevante sobre o processo de software open source quando
associa o desenvolvimento nas comunidades de software livre, desprovido de qualquer
processo formalizado, a um “Bazar” no qual as contribui¢des ocorrem ad hoc. Enquanto
que o modelo de desenvolvimento de software tradicional estd associado a uma
“Catedral” e possui um processo formal bem definido.



Conforme descrito por Gonzdlez e Robles em [Gonzalez et al 2003], muitos sdo
os beneficios do modelo de desenvolvimento open source, como a realizacdo dos
releases mais freqiientes; o baixo custo dos projetos, visto que desenvolvedores e
testadores trabalham de forma voluntéria; alta qualidade e confiabilidade, visto que sdo
muitas pessoas revisando e testando o mesmo cédigo, em arquiteturas e ambientes
distintos, aliado ao fato de que os usudrios sdo tratados como co-desenvolvedores e, em
muitos casos, ao deparar-se com o erro, ja identifica a solucdo e envia o pacote com o
problema solucionado.

3. Visao Geral do SCRUM

O Scrum foi criado em 1996 por Ken Schwaber e Jeff Sutherland e destaca-se dos demais
métodos 4geis pela maior énfase dada ao gerenciamento do projeto. Retne atividades de
monitoramento e feedback, em geral, reunides rapidas e didrias com toda a equipe, visando a
identificacdo e correcdo de quaisquer deficiéncias e/ou impedimentos no processo de
desenvolvimento [Schwaber 2004].

O método baseia-se ainda em principios como: equipes pequenas de, no
maximo, sete pessoas; requisitos que sdo pouco estaveis ou desconhecidos; e iteracdes
curtas. Divide o desenvolvimento em intervalos de tempos de no maximo, trinta dias,
também chamados de Sprints.

O Scrum implementa um esqueleto iterativo e incremental através de trés papéis
principais [Schwaber 2004]: Product Owner: representa os interesses de todos no projeto;
Time: desenvolve as funcionalidades do produto; ScrumMaster: garante que todos
sigam as regras e praticas do Scrum, além de ser o responsdvel por remover os
impedimentos do projeto.

Um projeto no Scrum se inicia com uma visdo do produto que serd desenvolvido
[Schwaber 2004]. A visdo contém a lista das caracteristicas do produto estabelecidas
pelo cliente, além de algumas premissas e restrigdes. Em seguida, o Product Backlog é
criado contendo a lista de todos os requisitos conhecidos. O Product Backlog é entdo
priorizado e dividido em releases. O fluxo de desenvolvimento detalhado do Scrum é
mostrado na Figura 1.

Todo o trabalho no Scrum é realizado em iteragdes chamadas de Sprints.
Schwaber [Schwaber 2004] explica que cada Sprint inicia-se com uma reunido de
planejamento (Sprint Planning Meeting), na qual o Product Owner e o Time decidem
em conjunto o que devera ser implementado (Selected Product Backlog). A reunido é
dividida em duas partes. Na primeira parte (Sprint Planning 1) o Product Owner
apresenta os requisitos de maior valor e prioriza aqueles que devem ser implementados.
O Time entdo define, colaborativamente, o que poderd entrar no desenvolvimento da
préxima Sprint, considerando sua capacidade de producdo. Na segunda parte (Sprint
Planning 2), o time planeja seu trabalho, definindo o Sprint Backlog, que s@o as tarefas
necessdrias para implementar as funcionalidades selecionadas no Product Backlog. Nas
primeiras Sprints, é realizada a maioria dos trabalhos de arquitetura e de infra-estrutura.
A lista de tarefas pode ser modificada pelo Time ao longo da Sprint, e as tarefas podem
variar entre quatro e dezesseis horas para a sua conclusao.

Durante a execucdo das Sprints, diariamente o time faz uma reunido de quinze
minutos para acompanhar o progresso do trabalho e agendar outras reunides necessdrias.



Na reunido didria (Daily Scrum Meeting), cada membro do time responde a trés
perguntas basicas: O que eu fiz no projeto desde a dltima reunido? O que irei fazer até a
préxima reunido? Quais sdo os impedimentos?

S ki @ ifu

Sprint Planning 1 Selected

Product Backlog Product Backlog Sprint Planning 2

— Sprint Backlog

20
= W2
Visgo! J,O - ;
a cada
. == ?\ i 24 horas
] \ e
v \ sprintn N
< Z a

Retrospective ——
Nova Funcionalidade Sprint

Figura 1. Visao geral do processo do Scrum (adaptada de [Gloger 2007])

No final da Sprint € realizada a reunidio de revisdo (Sprint Review Meeting) para que o
Time apresente o resultado alcangado na iteragdo ao Product Owner. Neste momento, as
funcionalidades sdo inspecionadas e adaptacdes do projeto podem ser realizadas. Em seguida, o
ScrumMaster conduz a reunido de retrospectiva (Sprint Retrospective Meeting), com o objetivo
de melhorar o processo/time e/ou produto para a proxima Sprint.

4. Estudo de Caso - Uso do Scrum no Processo Distribuido

O estudo de caso aqui apresentado foi realizado por uma fabrica de desenvolvimento de
software open source [O3S 2007]. Esta fabrica é formada por dez alunos do curso de
Pés-Graduagdo do Centro de Informética da Universidade Federal de Pernambuco.
Todos os integrantes sdo do curso de mestrado e fazem parte da estrutura organizacional
da fébrica, conforme ilustra a Figura 2. Essa estrutura é composta por um Comité
Gestor, responsavel pelas principais decisdes estratégicas da Fabrica e cinco Unidades
de Producdo, cada uma com atribui¢des bem definidas e complementares, trabalhando
juntas com os clientes e a comunidade externa.

O projeto executado esté inserido na drea de satude coletiva/publica, denominado
ANKOS (A New Kind Of Simulator) [ANKOS 2007], que surge como um sistema
capaz de organizar as informagdes coletadas por pesquisadores em dreas de estudo da
esquistossomose, bem como as imagens de satélite da regido, em um banco de dados
gerencidvel e com possibilidade de consultas, recuperac¢do e indexacdo da informacao,
formando uma base sdlida para a aplicacdo de autdmatos celulares que possibilitem a
geracdo de cendrios capazes de levar a tomada de acdes estratégicas de combate e
prevengdo da doenca.



COMITE GESTOR
Gerente de Gerente de Gerente
Gerente de RH L . - .
Negocios Projeto Financeiro

e : ens ey
ll Captacao de Andlise de ‘Gerenciamento Controle Garantia de
Clientes Negdcio de Projetos de Mudancas Qualidade

meieniasse
nfiguracao/Mudancas
Infra- Cormecio Controle
estrutura re¢ de Versao

lesenvo| ento

Requisitos Projeto de
ed Arquitetura
s-Venda
| Ca“ cemer
i Técnico

Comunidade Externa

Figura 2 — Estrutura Organizacional da Fabrica O3S

O processo da fabrica O3S é um tailor do Hukarz Process [Moraes 2007],
focado nas melhores praticas de engenharia de software, no RUP [RUP 2003] e no
Manifesto Agil [Beck, K. et al. (2001)]. E um processo evoluciondrio orientado a
manutencdo, baseado em esfor¢co colaborativo e em geréncia comunitdria. Além de ser
executado de forma distribuida, assincrona e descontinua, caracterizando, assim um
processo social, diferentemente dos processos tradicionais.

O processo foi definido baseado em alguns principios fundamentais: ciclo de
vida iterativo e incremental; planejamento nas fases iniciais do projeto; menor
quantidade de documentaco; certo caos, porém controldvel durante o desenvolvimento;
adaptacdo a comunicagdo remota; desenvolvimento centrado na arquitetura e adaptavel
de acordo com a necessidade do projeto.

O processo foi descrito baseado em politicas [Johnson K 2001] que definem as
diretrizes bdsicas a serem adotados por todos os projetos da fabrica de software. Elas
estdo voltadas para o desenvolvimento de software com caracteristicas open source, ou
seja, codigo compartilhado, equipe distribuida, desenvolvimento colaborativo e
descentralizado:

= O projeto de software deve ser modular para facilitar o desenvolvimento

concorrente;

= A prototipacao deve ser fechada: um pequeno grupo desenvolve a versao

inicial do produto antes de liberar para a comunidade externa;

= A melhoria do produto € iterativa e incremental;

= O desenvolvimento é concorrente em varios niveis. Vdrias atividades de

fases diferentes podem ser realizadas em paralelo;

= A revisdo de codigo deve ser realizada em larga escala. Véarios usudrios

revisam e inspecionam o cddigo de outros usudrios;

= QOs requisitos também podem ser oriundos da comunidade. Os usudrios e

desenvolvedores definem, coletivamente, as funcionalidades do software;



= Ferramentas de controle de versdao e controle de mudancgas sdo necessarias
para a boa comunicagao entre a equipe. Todo projeto deve ter um repositorio,
sob geréncia de configuracio, para armazenar a documentagdo e o cédigo
fonte;

= A forma de comunicacio principal € assincrona;

= A informacdo deve ser compartilhada: cédigo fonte, listas de discussdes,
reportagem de erros, solicitacdo de novos requisitos etc;

= A colaboracdo é descentralizada;

= A lideranca deve ser compartilhada;

= A motivagdo para contribuicio deve ser incentivada pelo desejo de
aprendizado, pela criagdio de uma comunidade, pela disseminagcdo de
tecnologia e inovacao.

Diversos aspectos do Scrum puderam ser utilizados para o desenvolvimento
distribuido. Primeiramente, o comité da fabrica de software realizou o estudo de
viabilidade baseada na vis@o apresentada pelo cliente (product owner). Em seguida, uma
proposta comercial foi descrita com todo o product backlog inicialmente negociado com
a lista dos requisitos da aplicacdo. Este product backlog foi priorizado e dividido nas
sprints do projeto. Cada sprint foi dividida em quinze dias, onde, ao final de cada uma,
um conjunto de novo produto era disponibilizado.

Dentro de cada sprint, eram realizadas reunides assincronas com o product
owner para que este indicasse os itens do backlog com maior valor de negécio. Em
seguida, a equipe analisava colaborativamente através de féruns e lista de discussoes,
qual a complexidade desses itens e o que caberia dentro da sprint em funcdo de sua
capacidade de producdo. A técnica de estimativa de Pontos de Casos de Uso foi
utilizada sempre considerando uma produtividade média das dltimas sprints realizadas.

Em seguida, os requisitos eram detalhados e, entdo, a partir dai o time
selecionava os itens de backlog priorizados, dividindo-os em tarefas de até 1 semana por
participante. Essas tarefas eram cadastradas numa ferramenta de planejamento e
acompanhamento de projetos para projetos que utilizam métodos dgeis [XPlanner
2002].

Durante os quinze dias da sprint, a equipe fazia uso do férum e lista de
discussdes para simular o Daily Scrum Meeting. De tal forma que, diariamente, todos do
time sabiam o andamento das atividades e os impedimentos encontrados até 0 momento.
Era responsabilidade de um integrante do comité da fabrica exercer o papel do Scrum
Master no sentido de resolver todos os impedimentos reportados por qualquer membro
do time.

Assim como a comunica¢@o da equipe, durante a sprint a comunicacio entre a
equipe e o product owner era realizada através do férum, e-mail ou ferramentas de
comunicagdo assincrona, seja para aprovagdo de documentos, seja para o esclarecimento
de duvidas ou alinhamento do andamento da sprint.

No final da sprint, uma reunido sincrona, através de Skype ou MSN, era
realizada com o objetivo de apresentar ao product owner os resultados obtidos até o
presente momento. Em seguida, todos os integrantes do time eram convidados a
participar da retrospectiva da sprint, que na maioria das vezes era uma reunido realizada
de forma presencial. Uma reunifo de li¢des aprendidas era conduzida por um integrante



do time que ficava responsédvel por coletar os pontos fortes, fracos e sugestdes de
melhoria de cada participante.

Algumas métricas foram coletadas e analisadas ao longo de cada sprint com o
objetivo de otimizar o uso do processo adaptado. Duas delas referem-se a variagdo de
esforco de desenvolvimento e a produtividade da equipe. Ambas tém o objetivo de
verificar a eficdcia do processo de estimativas de esfor¢o adotado. A variacdo média do
esfor¢o realizado pela equipe por sprint tem sido em torno de 15% do valor estimado.
Enquanto que a produtividade teve uma melhora significativa: iniciando o projeto com
uma estimativa de 18 homem-hora para cada ponto de caso de uso e estabilizando em 10
homem-hora para cada ponto de caso de uso produzido.

5. Conclusoes e Licoes Aprendidas

Este trabalho apresentou um estudo de caso sobre a aplicacdo de métodos dageis,
particularmente baseado na abordagem proposta pelo Scrum, em um processo para
desenvolvimento de software open source com fortes caracteristicas de desenvolvimento
distribuido.

Ao longo do desenvolvimento do projeto foi percebido que nem todas as praticas
do Scrum eram diretamente aplicadas ao contexto de desenvolvimento distribuido de
software. Os seguintes aspectos apresentaram os maiores desafios para o uso das
praticas ageis:

= O Scrum defende a unidade da equipe de desenvolvimento. Isso estd fortemente
relacionado com a presenca fisica do time e com as iteragdes didrias. Na
experiéncia aqui relatada, o time geograficamente distribuido conseguiu superar
este desafio com o uso sistematico do férum, listas de discussdes e ferramentas
de chat que permitiam uma boa itera¢do da equipe;

= As reunides didrias de quinze minutos previstas no Scrum para que todos
respondam as trés perguntas basicas foram substituidas pela comunicacio
assincrona semelhante ao item anterior;

= O Scrum é focado em equipes auto-organizadas e auto-gerencidveis, além de
prever a questdo motivacional como principal aspecto de sucesso do projeto.
Esses mesmos aspectos puderam ser percebidos no desenvolvimento distribuido,
onde a equipe poderia ser formada por qualquer membro da comunidade open
source que por vontade prépria quisesse fazer parte do projeto. Cada integrante é
quem escolhia qual atividade do backlog iria desenvolver;

= No Scrum, o product owner deve participar ativamente de varios pontos do
processo: visdo, sprint planning, release etc. No desenvolvimento distribuido,
nem sempre € possivel ter essa participacdo sistemadtica devido ao alto indice de
comunicacdo assincrona. Em alguns casos, foi necessario que o time tivesse uma
postura pré-ativa para tomar algumas decisdes sem envolver o product owner;

= Qutro ponto de adaptacdo foi em relag@o as responsabilidades do Scrum Master
que, neste contexto, além de ter parte de seu tempo dedicado ao gerenciamento
dos impedimentos reportados pelo time, também fazia parte do time de
desenvolvedores.



Apesar do Scrum ndo cobrir todas as caracteristicas especificas para equipes
geograficamente distribuidas, foi possivel fazermos uso de diversos aspectos de
desenvolvimento 4gil sem, no entanto, comprometer as particularidades exigidas por
esses tipos de projetos.

Referéncias

ANKOS (2007) “A New Kind Of Simulator”, http://sourceforge.net/projects/ankos/,
2007.

Boehm, B. (2006), “A View of 20th and 21st Century Software Engineering”’, ICSE 2006.

Beck, K. et al. (2001), Manifesto for Agile Software Development, http://www.
agilemanifesto.org/, Dezembro 2006.

Gloger, B. (2007), “The Zen of Scrum”, http://www.glogerconsulting.de.

Gonziles, J. e Robles, G.(2003) “Free Software Engineering : A Field to Explore”,
Upgrade - Software Engineering State of Art, Novética, volume IV, N. 4.

Hecker, F. (2000) “Setting Up Shop: The Business of Open-Source Software”, IEEE
Software.

Highsmith, J. (2004) “Agile Project Management — Creating Innovative Products”, AddisonWesley.

Johnson, K. A. (2001) “Descriptive Process Model for Open-Source Software
Development”, Master Thesis, Univ. Calgary, Alberta.

Kontio, J., Hoglund, M., Rydén, J. and Abrahamsson, P. (2004) "Managing
Commitments and Risks: Challenges in Distributed Agile Development,”. In
Proceedings of the 26th International Conference on Software Engineering, pp. 732-
733.

Martin, K. and Hoffman, B. (2007). “An open source approach to developing software
in a small organization”. IEEE Software, 24(1):46-53.

Moraes, A. (2007). “Open Source Development Process-like in the Enterprise”,
Dissertag¢do de Mestrado, Universidade Federal de Pernambuco.

03S (2007) “O3S Open Source Software Solutions”, http://www.yguarata.org/o3s/,
2007.

Raymond, E. S. (1998) “The Cathedral and the Bazaar”, Disponivel em:
http://www firstmonday.org/issues/issue3_3/raymond/, Acessado em Maio/2007.

RUP (2003) "Rational Unified Process," R. S. Corporation, Ed., 2003.06.01 ed, 2003.

Scacchi, W. (2001) “Understanding the Requirements for Developing Open Source
Software Systems”. In IEE Proceedings Software, volume 148, number 1, pp. 24-39.

Schwaber, K. (2004), Agile Project Management With Scrum, Microsoft.

SourceForge (2004) “SourceForge.net”, https://sourceforge.net/, Acessado em
Julho/2007.

XPlanner (2002) “Project planning and tracking tool for agile development teams”,
http://www.xplanner.org/, Acessado em Julho/2007.



